
Paper AD-03

The Revised NTP TDMS System
Gabriel Cano, Kevin McGowan, Jean Orelien, Constella Group, Durham, NC

ABSTRACT
The Toxicology Data Management System (TDMS) for the
National Toxicology Program (NTP) is sponsored by National
Institute of Environmental Health Sciences (NIEHS). This is a
reporting system that is used to analyze the toxicity of chemical
agents by performing long-term and short-term studies of their
effects on rats and mice. The current system has been in
existence for approximately 20 years. Originally, this was a batch
reporting system. In the past 2 years the system has developed
into a web reporting system. Formerly this system was a multi-
generational development of various programming languages and
applications, including SAS. Its revision has long been needed.
This system has been revised to use current technologies. The
statistical reporting compunent for this system was implemented
on a Linux operating system using SAS. An Oracle database was
used to access data and store the final report from SAS. This
paper will cite various challenges encountered during
implementation and the resolutions. Emphasis will be given to
aspects of the SQL, ODS, and IntrNet products and system
interface

KEYWORDS
SAS/IntrNet, SAS SQL, ODS, Oracle, Linux

INTRODUCTION
The purpose of this presentation is to illustrate the various phases
of software development for the statistical reporting component of
the NTP TDMS. First, a brief history of the current system will be
presented. Next, the revised system will be described with some
logistical details. Finally, the more interesting and challenging
experiences of the system implementation will be discussed. The
majority of this presentation will detail the steps taken to put this
system into place and how the team dealt with various obstacles.

A BRIEF HISTORY
The TDMS database system for the NTP started as an IBM
mainframe system at NCTR (National Center for Toxicology
Research) in Arkansas in 1980. When the NTP project
headquarters moved to NIEHS the TMDS database system
moved with it. In 1985 TDMS moved from the IBM system to a
VAX/VMS system. One of the reasons it moved to a VAX system
was the availability on VAX of the ADABAS software that was
used as the database. The TDMS system did not go through any
major changes after 1985 until 1998 when it was moved to Open
VMS on a VAX Alpha server machine from a larger VAX system.
Also in 1998 a web-based interface was added to allow users to
request reports from any web browser. In 2002 the NTP decided
to completely revamp TDMS converting it to run on more current
technologies.

THE OLD SYSTEM AND THE DATABASE
The NTP database consists of animal data such as pathology
results, animal weights, food and water consumption and other
measurements that are collected from several labs scattered
across the United States along with one lab in Italy. The data is
collected using personal computers at each lab on a daily basis.
The data is transferred from the labs into the TDMS database
electronically via modems. The communication to the labs is two-
way in that the project directors can also send data back to the
labs if it needs correction or updating. At the start of a project
study managers download all the data needed to run the study
into the lab computers. The software on the computers in the

labs is written by the same programmers who maintain the TDMS
database.

This is a general logistical picture of the system:

 Figure 1. The System

The conversion of the TDMS system from a VAX/ADABAS
system to one utilizing current technologies required that all of the
database queries be written over from scratch. This ended up
being a good idea because the queries in the old system have the
following problems:

• Hard to maintain – the queries are written in many
different languages such as C, Pascal, Cobol and
Natural (Natural is the database query language for
ADABAS.) Some of the languages used have no
current employee that is an expert in the language.

• Limited use – most of the current queries were

designed to be used on only 1 study at a time. For
projects where data are needed to be analyzed across
multiple studies additional programming has to be
done to combine the data from multiple studies.

• Not a relational system – the ADABAS system uses flat

files rather than a relational system. This leads to
more programming than is needed with a relational
system. Flat file systems also typically use up more
disk space and run slower than relational systems.

• Availability - Though SAS is already used for statistical

reporting more recent improvements to that product
could be utilized to make reports more available to
scientists/users.

For these reasons and others the report system as a whole needs
a reinvigoration of succintness and accessibility.

A REVISED SYSTEM
A system revision has long been needed. Years of multi-
generational development have made the system awkward for
both user and maintainer. The utilization of current technologies
is much desired and have made the fruition of the new web-based

Query
Database

Submit and
 Report

Analysis
Report

system very exciting. These technologies include HTML, Java,
an Oracle database running under the Linux operating system
and SAS.

The new Oracle/Linux TDMS is better than the current system in
several ways:

• More user friendly - the new system is 100% web based
rather than using an old-fashioned character based
system.

• Better database design - the new system uses a

relational design for better data storage and faster
access. The new database is designed to be much
easier to compile data across multiple studies.

• Better reports - the upgraded system will output reports

in modern formats such as PDF and XML rather than
plain ASCII text files. The modern report formats allow
the usage of color, graphics and text combined, and
better ability to distribute the reports to users on
different computing platforms such as Windows,
Macintosh, and various forms of UNIX.

• More consistent software development strategy - the

new Oracle/Linux system uses Oracle, Java, HTML,
and SAS for 95% of the software modules.

Despite the fact that newer tools have been used there were
some situations where some of the old technology could not be
immediately eliminated. Those portions will eventually be phased
out. On the other hand there were points in the system where the
newer technology was still unable to accomplish the streamlining
that was sought after with this revision. This will be elaborated in
the programming development phases section.

This a high level graphic of the revised system, TDMS Enterprise
(TDMSE):

 Figure 2. Revised System

A request for a statistical report proceeds as follows:

• A scientist/user logs into the system and issues a
request for a particular report(s).

• The Application Server (Appserver) then starts a SAS

program via SAS Intrnet. This program is now in
control.

• A report process is initiated in Oracle database by the

program.

• The Oracle database is queried using the information
passed from the HTTP post.

• The report entry in the Oracle database is then updated

to finished.

• The TDMS then retrieves the report and makes it
available to the scientist/user.

DEVELOPMENT PHASES
Implementation and development of this system brought an array
of never ending challenges. Most notably it would take about 2
months for the system web server and the SAS Application server
to be configured and ready. Issues regarding firewalls prevented
direct system development until all the proper personnell could be
contacted. Availability of the Oracle database [and data] was
always a concern since that deveopment was outside and apart
from the statistical reporting component of the system.

Due to the circumstances at hand a massive effort of parallel
development had to happen. The statistical reporting programs
had to absolutely be implemented and ready to run by the time all
the interface pieces of the system were in place. Development
had to begin ASAP or the statistical reporting programs would not
be ready for the TDMS beta test.

Figure 3 is a graphic of the most available and stable testing
system:

 Figure 3. Testing Environment

With this configuration the reliability expectation was most
favorable and one that could be controlled. This was also the
best contigency plan since the expectation should be that the
availability of interfaces, firewalls and the database will always be
precarious.

Scientist’s
workstation

Oracle
Database

 SAS
Webserver
Application
 Server

Reports Porgrammer Request

SAS SQL Transactions

Scientist’s
workstation

Oracle
Database

TDMS
Enterprise
(Webserver)

 SAS
Application
 Server

HTTP
Post

SAS Intrnet

Display Result

Report/System Status

SAS SQL Transactions

Report Request

The following developmental phases cite major episodes
encountered during development and steps taken to deal with
them and the resolution. These are not independent process and
in almost all cases development crossed over several phases.

DEVEOPLMENT PHASE 1 – PORTING AND RUNNING
The old system code and data were taken directly from old
system work directories and ported to a new testing environment.
Initially this was a PC environment since the firewall precluded the
developers from entering. Eventually this issue was resolved and
the SAS code was ported to Linux. Programs were implemented
to fit the new file system. Looking at Figure 3 the initial
programmer requests were from SAS batch. The old data was
used until the queries could be developed.

Once programs were running code was developed to simulate an
HTTP post. Basically an HTTP post would be sent by the TDMSE
system and received by SAS/IntrNet as a group of macro
variables. This file resmbles what was used for the hypothetical
post:

%let studynum = &textStudyNum;
%let testnum = &textTestNum;
%let repstartdate = &textStartDate;
%let rependdate = &textEndDate;
%let startcage = &textStartCage;
%let endcage = &textEndCage;
%let sendtoprt = &textPrinter;
%let ntpreport = &textArrayReport;

many other parameters were also passed along

Once the Appserver was online programs were then run with a
web browser. Running programs with a web browser would allow
the Appserver to carry out a programming request rather than a
batch request. The state of the programming environment during
this programming invokation is closer to the environment that
would exist once the system was up and running. This is what
launching a program via the application dispatcher might look like:

webserver/directory/broker?
_program=lib.pgm.sas&_service=default

Once HTML test pages were made available prgram request
could then be made via those pages and a real HTTP post would
be sent. This is what a test page looked like:

 Figure 4. HTML Test Page

This is what a typical HTTP post looks like:

Symbols passed to SAS

#symbols: ???
 "_SRVNAME" = "webserver"
 "_SRVPORT" = "ZZZZ"
 "_REQMETH" = "POST"
 "_RMTHOST" = "XX.XXX.XXX.X"
 "_RMTADDR" = " XX.XXX.XXX.X"
 "_RMTUSER" = ""
 "_HTCOOK" = ""
 "_HTUA" = "Mozilla/4.0 (compatible; MSIE
 6.0; Windows NT 5.1)"
 "_mrvimg" = "/sasweb/IntrNet8/MRV/images"
 "_grfaplt" = "/sasweb/graph/graphapp.jar"
 "_grafloc" = "/sasweb/graph"
 "_SERVICE" = "default"
 "_PROGRAM" = "devenv.test.sas"
 "_debug" = "131"
 "_VERSION" = "8.2"
 "_URL" = "/cgi-bin/broker.exe"
 "_ADMIN" = "[your-name]"
 "_ADMAIL" = "[your-email]@[your-site]"
 "_SERVER" = "sashost"
 "_PORT" = "YYYY"

Using timeout: 60
Content-type: text/html Pragma: no-cache

Content-type: text/html

Once the system was fully functional the testing environment
scheme changed from the testing system (Figure 3) to the
porposed revised system (Figure 2).

As stated before due to the precarious nature of software
development system implementation and testing development
efforts constantly wavered between the initial batch method to
actual system program requests and everything in between.

DEVELOPMENT PHASE 2 – GENERATING OUTPUT
This portion of development and testing dealt mostly with
converting the old text report into PDF format. Since
development was now occuring on a Linux system the temporary
files and data comparisons within SAS were still under the
assumptions of a VAX/OpenVMS system. The issue of case
sensitivity popped up often. Needless to say this was a tedious
task to resolve.

Once the report result file was populated with information
(whether correct or not) the text file was converted to PDF format
using ODS. The problem here now became inserting page
breaks in to a PDF file using ODS under SAS/IntrNet. It turns that
SAS/IntrNet has default options that override the capability of
inserting pages breaks into a PDF in this situation. This problem
was resolved by the following setup before attempting to create
the report file:

options nonumber nodate spool;
ods pdf file="&reportfile";
title '00'x;
run;

create report file here…

ods pdf close;
ods listing;
run; quit;

An issue of page orientation also arose. Since development was
based on SAS 8.2 reports were relegated to just one orientation
for PDF reports. SAS technical support has stated that SAS 9 is
due to allow changing orientation for PDF documents.

DEVELOPMENT PHASE 3 – DEVELOPMENT OF QUERIES
Pertaining to code development this was an aspect of report
programming that would change the face of the statistical
component in a slightly more dramatic fashion. This is due to the
introduction of the databse query into the reporting component.
Previously this was a separate and independent process. But
now that a new database exists those queries a have to be
rewritten. The multi-generational development of the old system
implies that there is no one expert on the system and those that
might be are long gone.

To understand the effort needed to proceed with query
development one must understand the elements of the Oracle
database.

The database contains approximately 100 tables with the
following breakdown by category: 20 core tables, 15 protocol
tables, 25 reference tables and 40 intersection tables. There are
just over 500 long term studies in the database along with a
similar number of short term studies.

The process to develop queries to work with the new Oracle
database was broken down into the following steps:

• Documenting existing queries - this was needed to
make sure that the new queries would match the
existing queries.

• Learning the structure of the new database – this step

was needed since the new database design was very
different from the old design.

• Development and testing of new queries outside the

report system – this included comparing data output
from the existing queries to the data output from the
new queries.

• Integration of queries into report programs - this step

includes testing of the complete report and additional
programming to allow the data to be subset during the
running of the report.

In addition to the SQL statements that are used to extract the data
from the Oracle tables the SAS code that contains the queries
also contains additional SAS data steps that are used to

manipulate the data after it is retrieved from the Oracle database.
The sections of the SAS programs that are not queries are being
moved to Linux from the VAX system with very few changes for
the first version of the new system. Over time the non-query
sections will be updated to make them more efficient by using
more built in SAS procs and less cumbersome data step
programming.

This is an example of the code used to extract information from
the Oracle databse:

proc sql;
connect to oracle(user=xxx orapw=yyy
path=&path);
create table sacrif2 as
select * from connection to oracle
(
select
 animal_num as an_no,
 p_treatments.treat_num as treat,
 r_reference_groups.code as remove
from
&ntpdatabase..c_animals,
&ntpdatabase..p_experiments,
&ntpdatabase..p_treatments,
&ntpdatabase..r_reference_groups,
&ntpdatabase..c_animal_removal_events
where
c_animals.pexp_pac_id
 = p_experiments.pac_id and
c_animals.ptre_pac_id
 =p_treatments.pac_id and
p_treatments.pexp_pac_id
 =p_experiments.pac_id and
c_animal_removal_events.RREFG_RAC_ID_ANM_RML_
RSN
 =r_reference_groups.rac_id and
c_animal_removal_events.canl_cac_id
 =c_animals.cac_id and
r_reference_groups.reference_type
 like 'ANIMAL_REMOVAL_REASONS' and
p_experiments.study_num=&ntpstudy and
p_experiments.test_num=&ntptest
);
disconnect from oracle;

DEVELOPMENT PHASE 4 – REPORT INSTANTIATION
Communication with the Oracle database brought on a new set of
problems. In order for the TDMSE to see a report an entry had to
be defined in the work queue. The process was carried out within
SAS as follows: initialize the table with a report entry, enter the
report location, and finally signal that the process in finished.
Problems arose due to the databse requirements for proper
information.

This is a query to define a report as started in the Oracle
database:

proc sql;
connect to oracle(user=xxxxx orapw=yyyyyy
path=&ntpsid);
execute
(insert into &ntpdatabase..u_reports
values (&operatorid,
 &experimentid,
 &sequenceid,
 %str(%'&sysdate.%'),
 NULL,
 NULL,
 &store_ess,
 'application/pdf',

 NULL,
 %scan(&status_rac_id,&estat),
 &reportid,
 %str(%'&txtsubtitle.%')
)) by oracle;
disconnect from oracle;

This is the SAS call to the Java code to insert the report into the
Oracle database:

%let temp_out =
"/usr/java/j2sdk1.4.1_01/bin/java
-classpath ""/data1/asi/ntplib/ojdbc14.jar:
/data1/asi/ntplib"" FileToClob userid
password database uniqueid reportfile";
run;
systask command &temp_out shell="tcsh";

The above Java code was developed outside the scope of this
presentation. It is only shown for completeness of covering the
problems encountered during devleopment. SAS SQL under
version 8.2 does not allow an insert of data into an Oracle
database. So the process of locating the PDF file had to be done
in an external process from SAS. According to SAS techincal
support this problem is ameliorated in SAS version 9.

Another noteworthy item is that during program runs with
SAS/IntrNet the programming environment variable setting are
lost. So even though the path to Java could be defined in the
programmer’s environment setting the external process called
from SAS still does not know the location of the Java program.
So the entire path for the location of Java had to be used for the
systask call.

Once the program was inserted in to the Oracle database the
report request was complete. This is a query to define a report as
finished in the Oracle database:

proc sql;
connect to oracle(user=xxx orapw=yyy
path=&path);
execute
(update &ntpdatabase..u_reports
set
completion_date = %str(%'&sysdate.%'),
report_error = NULL,
rrefg_rac_id_status =
%scan(&status_rac_id,&estat)
where
id = &sequenceid
) by oracle;

Note: it is necessary to have the Oracle database know that a
NULL field is being entered for missing or unkown information.
This is not a major endeavor but it has to be communicated with
the administrators. Otherwise errors and/or false operations will
result.

DEVELOPMENT PHASE 5 – TESTING AND DEVELOPMENT
For this effort the system directory structure played a crucial part
in how team members carried out testing. Once programs were
reasonably functional team members were able make copies of
the system and test very different aspects of the programs. But
the key was that the programs had to be reaasonably functional.

 Figure 5. Sytem Directory Structure

And clearly the ability to test the system heavily had a great
impact on how the system was further developed. It did not
matter at what point testing needed to occur. Team members
could test the system from the batch level or the higher system
level.

CONCLUSION
It should be clear from the described development phases that
there was a steady level of complexity present throughout system
development and testing. The team consisted of anywhere from 4
to 6 personnell working at any one time on the system revision.

It is the hope of the authors that the reader now has an idea of
what a possible testing environment might look like for developing
a large system which requires SAS/IntrNet and/or interaction with
an Oracle database.

Another noteworthy observation that is that to date various
projects utilizing SAS/IntrNet require a fair amount of contact with
system administrators and a knowledge of the systems at play
and the internet capabilities or limitations.

REFERENCES
SAS Web Tools: Static and Dynamic Solutions Using SAS/IntrNet
Software Course Notes, 2001 SAS Institute Inc.

SAS Web Tools: Advanced Dynamic Solutions Using SAS/IntrNet
Software Course Notes, 2001 SAS Institute Inc.

ACKNOWLEDGMENTS
This paper was made possible by the laborious efforts of
individuals employed by Constella Group, Inc. and the National
Institute of Environmental Health Sciences.

CONTACT INFORMATION
Contact the author(s) at:

Progaams Utility
Progaams

Temporary
Data

Output

Copy of Test System

Progaams Utility
Progaams

Temporary
Data Output

Test System

Gabriel Cano
 Constella Group
 2605 Meridian Parkway
 Durham, NC 27713
 Phone: (919) 313-7708
 Fax: (919) 544-7507
 Email: gcano@constellagroup.com
 Web: www.constellagroup.com

Kevin McGowan
Constella Group
2605 Meridian Parkway
Durham, NC 27713
Phone: (919) 313-7554
Fax: (919) 544-7507
Email: kmcgowan@constellagroup.com
Web: www.constellagroup.com

Jean Orelien
Constella Group
2605 Meridian Parkway
Durham, NC 27713
Phone: (919) 313-7607
Fax: (919) 544-7507
Email: jorelien@constellagroup.com
Web: www.constellagroup.com

TRADEMARK INFORMATION
SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries.

Oracle is a trademark or registered trademark of Oracle
corporation in the United States and/or other countries.

Linux is a trademark of Linus Torvalds

VAX is a trademark of Digital Equipment Corp.

OpenVMS is a trademark of Compaq Information Technologies
Group, L.P. in the United States and other countries.

IBM is a trademark of International Business Systems, Inc.

Java is a Trademark of Sun Microsystems, Inc.

